Bayesian sparsity-path-analysis of genetic association signal using generalized t priors.
نویسندگان
چکیده
We explore the use of generalized t priors on regression coefficients to help understand the nature of association signal within "hit regions" of genome-wide association studies. The particular generalized t distribution we adopt is a Student distribution on the absolute value of its argument. For low degrees of freedom, we show that the generalized t exhibits "sparsity-prior" properties with some attractive features over other common forms of sparse priors and includes the well known double-exponential distribution as the degrees of freedom tends to infinity. We pay particular attention to graphical representations of posterior statistics obtained from sparsity-path-analysis (SPA) where we sweep over the setting of the scale (shrinkage/precision) parameter in the prior to explore the space of posterior models obtained over a range of complexities, from very sparse models with all coefficient distributions heavily concentrated around zero, to models with diffuse priors and coefficients distributed around their maximum likelihood estimates. The SPA plots are akin to LASSO plots of maximum a posteriori (MAP) estimates but they characterise the complete marginal posterior distributions of the coefficients plotted as a function of the precision of the prior. Generating posterior distributions over a range of prior precisions is computationally challenging but naturally amenable to sequential Monte Carlo (SMC) algorithms indexed on the scale parameter. We show how SMC simulation on graphic-processing-units (GPUs) provides very efficient inference for SPA. We also present a scale-mixture representation of the generalized t prior that leads to an expectation-maximization (EM) algorithm to obtain MAP estimates should only these be required.
منابع مشابه
Analysis of Multiresolution Image Denoising Schemes Using Generalized{gaussian Priors
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaus-sian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavy{tailed priors. This allows us to show a simple relationship between diierentiability of the log{ prior at zero and the sparsity ...
متن کاملA hierarchical sparsity-smoothness Bayesian model for ℓ0 + ℓ1 + ℓ2 regularization
Sparse signal/image recovery is a challenging topic that has captured a great interest during the last decades. To address the ill-posedness of the related inverse problem, regularization is often essential by using appropriate priors that promote the sparsity of the target signal/image. In this context, `0 + `1 regularization has been widely investigated. In this paper, we introduce a new prio...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملA New Complexity Prior for Multiresolution Image Denoising
Application of the Minimum Description Length (MDL) principle to multiresolution image denoising has been somewhat unsuccessful to date. This disappointing performance is due to the crudeness of the underlying prior image models, which lead to overly sparse solutions. We propose a new family of complexity priors based on Rissanen's universal prior for integers , which produces estimates with be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2012